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A new method of approximation is proposed which maintains almost all of the
essentials of the Chebyshev theory of best uniform approximation, while also using
an L-type measure of approximation. © 1991 Academic Press, Inc.

1. INTRODUCTION

In a recent paper Pinkus and Shisha [2] proposed a new method of
approximation which maintains many of the essentials of the classical
theory of best uniform approximation, while also using an L9type
{(1<g< o) measure of approximation. But, as they mention, their
“distance” function is not derived from a norm. Moreover, the Chebyshev’s
alternation characterization is not complete for the gauge |-l [2,
Theorem 3.1], and a best approximation does not necessarily exist for the
gauge || - || * [2, Theorem 2.57.

In this paper we propose another new method of approximation which
is based on a norm and maintains almost all of the essentials of the
Chebyshev theory of best uniform approximation, while also using an
L-type measure of approximation.

Let Cla, b] denote the class of real-valued functions continuous on
{a, b]. For feC[a, b] we define

(Al =sup{

f “fx) dx

:a<c<d<b}. {1

It is easy to see that the supremum is attained. In the next section we shall
see that this is indeed a norm.
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Let G be an n-dimensional subspace of C[a, b]. Our problem is, given
feCla, b], find a pe G such that

If = pll = inf 11~ ql.

Such a function p (if any) is defined to be a best approximation to f
from G.

In Section 2 we shall discuss some properties of this norm. Sections 3
and 4 are devoted to developing characterizations and uniqueness of best
approximation, respectively.

2. PRELIMINARIES

First we introduce some notation and definitions. Define X :=
{I=(c,d):Ic[a,b]}. We adopt the convention that X contains the
unique “zero” element 0=¢. If I=(c,d)e X\{0}, we write I/~ =c¢ and
It=d I,->1:=1,—-1" and I} —I*. In what follows we always
assume that f C[a, b].

For ease of notation we set

fy:= | fx) dx

and

X, ={IeX:|f(DI =1}

With this notation (1) may be rewritten as

11l = sup [£(D)]. (2)

feX

Lemma 1. If Te€ X, then I7,1I" € Z(f) v {a, b}, where Z(f) =
{xe[a, b]:f(x)=0}.

Proof. Suppose on the contrary that I~ ¢ Z(f)u {a, b}. We assume
without loss of generality that f(J)=|f|l. If f(I")>0 (<0), then
ST~ =6,1")>f(D)=]fll for t>0 (<0) sufficiently small. This con-
tradiction proves I~ € Z(f)u {a, b}. Similarly I * e Z(f) v {a, b}. 1

THEOREM 1. |[-|| is a norm and |f|=sup{|f(D)|:I", 1" €Z(f)u
{ab}}.
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Proof. 1t is easy to check that ||-| is a norm. For example, for the
triangle inequality we see that

I/ + gl =sup | /(D) + ()| <sup | f{])|

IeX feX

+sup gD =[£I+ gl

IfeX
The latter conclusion of the theorem follows directly from Lemma 1. J§

By Theorem 1 the existence theorem in [1, p. 20] guarantees that to each
feCla, b] there exists at least one function peG which best
approximates f.

Now we give some properties of X.

LemMMA 2. Let I, Je X,
(@) If fAiD=f(J) with InJ#0, then f(I\J)=f(J\])=0 and
fnhy=fIud)=f(I)
(b) Iff(D)=f(J) with I=J, then f(I7,J " ))=f((J ", 1"))=0;
(©) Iffl)=—f(N)withI~ <J and I* <J™, then f(InJ}=0 and
FINS)=—fUI\D) = f(I);
(d) Iff()y=—f)withI>J, then f(I7,J ) =f((J*, 1"})=f(I).

Proof. We assume without loss of generality that f(I)=|f|. Denote
L=({I",J )Yand R=(J*,I™).

(@) Since fU\))=f(D)—fUn))=|f|-fUnJ)=0 and f(I\])=
SUOD) = f(J) = fUuD)—=|fll <0, f(I\J) = 0. Similarly f(J\I) = 0.
Whence f(InJ)=f(Ivu J)=f(I).

(b) It follows from (a) that f(L)+f(R)=0. Since f(L)=
SLOT)=f(J)<0 and f(R)=f(JUR)— f(J) <0, f(L)= f(R)=0.

(c) Since fINn)=f(I)—f(I\J)=0and f(InJy=f(J)—f(J\) <0,
SUnJy=0. Hence f(I\J)= — f(J\I) = f(I).

P )(d= That f(L)+ f(R)=f(I)—f(J)=2f(/) implies f(L)=f(R)=
I).

LemMA 3. Let I,J, and K satisfy I* =K~ and K* =J~. Let I, Je X.
Then

(@) If f(1)=f{J), then f(K)=—f(I);
(b) If f(I)= —f(J), then f(K)=0.
Proof. As before, we assume f(7)=| f].
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(a) Since f(K)=/f(TuKuJ)=f(I)=fJ)< —f(]), f(K) =~ f(I).
(b) Since f(K)=/f(IuK)—f(I)<0 and f(K)=f(JuK)—f(J)=0,
S(K)=0. 1

In order to describe the further properties of X, we need the following
definitions.

DerFNITION 1. Let f#0. An Je X, is said to be a definite interval of f
if there is no Jc [ satisfying f(J)= — f({). The set of all definite intervals
of f'is denoted by X*.

An Je X} is said to be a maximal (resp. minimal) definite interval of f
if there is no JoI (resp. J< ) satisfying Je X* and J+#1 The set of
all maximal (resp. minimal) definite intervals of f is denoted by X}
(resp. X7').

Remark. By the definition and Lemma 2 it is easy to see that if
Je X} with f(I)=f(J) and InJ#0 then TuJe X}*.

DerFmNiTION 2. {I}, ..., I,,} = X\ {0} is said to be weakly increasing if

(@) I/ <l ,and I <1} |, i=1,.,m—1;

(b) I} <I, i=l.,m—2.

If I and J are nonempty subintervals of [a, #], I <J means that x < y for
all xeland all yeJ.

{1, ... I,} = X\{0} is said to be increasing if I, < --- <1I,,.

A system of extended intervals /,, .., [, ie, [,eX or I,=[x, x] :=x,
x€[a, b], is said to be increasing if I, < --- < 1[,,.

Remark. 1t is easy to see that if {I,, .., I, } is increasing (resp. weakly
increasing) then any subset {I,} of {I,,..,1,} with i;<i,< --- is also
increasing (resp. weakly increasing).

LemMA 4. Let f#0. Each Ic X, contains an interval Je X} with

S =f).

Proof. Suppose to the contrary that for some 7€ X, such an interval J
does not exist. Then for I, = I there exists a J, = I, satisfying f(J,) = — f(J).
By Lemma 2 we have that I, <J[ <J; <IS and f(I,)=f{), where
I,=(,.,J) satisfies J, = I,\I,. We can by induction obtain {I;} and
{J;} which satisfy I,cI,_,, J;<I,_\I,, f(I,)=f(I), and f((J,) = —f(I),
i=1,2,... It is easy to see that the {J;} are all disjoint, a contradiction.
This completes the proof of the lemma. ||

LeMMA 5. Each Ie X} must be contained in a unique interval Je X }‘ .
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Proof. Put
J =inf{fK:K*=I"and Ke X}},
J*t=sup{K*":K~ =] and KeX}}.

Denote L=(J ,I7), R=(I",J%), and J=LUR.

First, we see that f(L) = f(R) = f(I), whence f(J)= f{I). Thus Je X.

Next, we prove that JeXF. Suppose to the contrary that there is
a KcL satisfying f(K)=—f(I). Thus, f K~ =L", then f({(K)=
S(LNK)=0 by Lemma 2, and if K~ > L, then there is a K, e X} such
that K;,>(KuL) and K =L". Both of them are impossible. This
contradiction proves Le X 7. Similarly Re X*. Then Je X .

On the other hand, suppose that there is a Ke X* with K> J. Then it
is easy to check that K, :=(K~,L")>L and K, € X*. So we must have
K, = L. Similarly (L™, K*)=R Thus K=J and Je X}

The uniqueness is obvious. }

LemMA 6. Let I, Je X' satisfy f(I) = f(J) with I #J and I~ <J ™. Then
(a) InJ=0

(b) There is a Ke X} satisfying f(K)= — f(I) and for which {1, K, J}
is weakly increasing.

Proof. (a) If InJ#0, by the remark after Definition 1 we have
T'uJe X}, which is impossible because Je X}'. So InJ=0.

(b} By Lemma 3 we see that f(K;)= —f(I), where K, :=(I",J 7).
Using Lemma4 we may choose a K,eX} with K,cK, and
f(K,)= —f(I). By virtue of Lemma 5 we can find a Ke X}l with Ko K,
and f(K)= — f(I). Clearly {I, K, J} is weakly increasing. J

THEOREM 2. X} is finite. Moreover X' = {I,}Y with IT < --- <Ij is
weakly increasing and satisfies f(1;, )= —f{1,), i=1,2, ., N—1.

Proof. By Lemma 6 the intervals in {Je X}’ :f(J)>0} and the inter-
vals in {Ke X}’ f(K) <0} are all mutually disjoint, respectively. Whence
they are finite and may be denoted by {J,}7 and {K}] with J, < --- <J,,
and K ;< --- <K,, respectively. Let their union be {I;}} satisfying
I7 < ..-<I,. According to Lemma 6 we assert that {I,}V is weakly
increasing and satisfies f(I;, )= —f([,), i=1,. ., N—1. §

Being parallel to X }l we given the properties of X7

Lemma 7. Each Ie X must contain a unique interval Je X 7.
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Proof. Put
J  =sup{K":K*=I"and Ke X}},
J*=inf{K*: K~ =1 and KeX}},
J=(J ", J*).

The same arguments as in the proof of Lemma 5 give the one of the
lemma. |

THEOREM 3. X7 is finite. Moreover X7 = {I,}Y with I7 < --- <I} is
increasing and satisfies f(I;, )= —f(I), i=1, ., N—1.

Proof. 1t is noted that if 7, Je X7 then either I=J or InJ=0. In fact
I#Jand InJ#0 imply by Lemma 2 that f(InJ) = f(I) when f(I) = f(J),
and that f(I\J) = f(I) when f(I) = — f(J), contradicting /, J€ X7'. Thus we
have that either 7=J or InJ=0. Therefore, X7 is finite. Moreover X7’
may be written as {[,}), I,<--- <I, satisfying f(I,,,)=—f(I)),
i=1,.,N—-1. |

The following theorem describes the relation between X7 and X7 where
“card” denotes “the cardinality of.”

THEOREM 4. card X}/ =card X7, which we denote by N. Furthermore,
if Xy={I,.., Iy} and X7'={J\, .., y}are weakly increasing, then
Jicl,i=1,.. N, and J;=(I}" |, 1;,,), i=2, .. N~ 1.

Proof. By Lemmas 5 and 7 we see that card X} =card X7 and J,< I,,
i=1,.., N, By Lemma 3 and Definition 1, we have that (I;* ,, 1 )e X7,
i=2,.., Ny—1. Whence J,= (I}, I5,), i=2, s Ny— 1. 11

i+1

3. CHARACTERIZATION

THEOREM 5. Let G=span{g,,..,g,} be an n-dimensional subspace of
Cla,bl, feCla, bI\G, peG, r=f—p and s(I)=sgnr(l). Then the
Sfollowing statements are equivalent:

(a) p is a best approximation to f from G;
(b) There does not exist a g€ G such that s(I} g(I)>0 for all Ie X,;

(¢) The origin of n space lies in the convex hull of the set
{s()I:1e X,}, where I=(g(I), ..., g.(I));

(d) max, x s(I)g(I)=0 for all g€ G.

Proof. 1t is noted that X as well as X, are all compact. As usual, we
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denote by C(X) the class of continuous functions on X. Then f and g/s, as
functions of I on X, are also elements of C(X). Applying Theorem 1.3 of
Chap. IT in [3, p. 178] we directly get {a) < (c). Meanwhile, since the set
{s(DI:Ie X,} is a compact set of the usual n-dimensional space, according
to [1, p. 19, Theorem on Linear Inequalities] we assert (b} <> (c). Finally,
the equivalence (b)<>(d) is obvious. §

In order to establish an alternation theorem we need a further condition
on {g, .. &,}, which we shall give in the following definition.

DEFINITION 3. A system of functions {g, .., g,} = C[a, b] is said to be
a quasi-Chebyshev system on [a, b] (or a Q7-system), if

D, .., 1) :=det{g,-([i)}fj:1 #0

whenever {I;}} < X is increasing. An n-dimensional subspace G of C[a, b]
is called a QT-subspace if it has a basis which is a QT-system.

We next establish a preliminary result, which is of independent interest.

LemMa 8. Let pe Cla, b]. Let {I,}7 < X be weakly increasing and e = 1
or —1, fixed. Suppose

(—=Dep(I,) =0, i=1,..,m (3)
Then the following statements hold:
(a) There exist m intervals J,, ... J,,, J, < --- <J,, such that
(—1) ep(J;) =0, i=1,.,m (4}

Furthermore, if p(x) is not identically equal to zero om any nontrivial
subinterval, {J,)7 may be chosen so that

(—1) ep(J))>0, i=1, .., m; (5)

(b) If m>1, there exist m—1 intervals K,, ... K, ,, Ki< - <
K,._ 1, such that p(K;)=0, i=1,.,m—1.

Proof. Assume without loss of generality that e= 1.
(a) Put
J=1, v=1, if IInl,=0
Ji=I\L,, I=InI, if I;,nl,#0 and p(J,n1,)=0
Jo=I,nl,, Ii=I\ if I,nL,#0 and p(J,n1,)<0.
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It is easy to see that p(J,)<0, p(I})=0, and J, nI,=0. Meanwhile
{I,,I,..,1,} is also weakly increasing and satisfies p(/5)>0 and
(—1)Y'p(I)=>0, i=3,..,m By induction we can obtain {J;}7,
J, < -+ <J,, which satisfies (4).

If p(x) is not identically equal to zero on any nontrivial subinterval, then
(—1)" p(J;) =0 implies that there is a subinterval of J,, denoted again by
J,, satisfying (—1) p(x)>0 on J,. Whence (5) follows.

(b) If p(x)=0 on some nontrivial subinterval, the conclusion is tri-
vial. Otherwise by Part (a) there are m intervals J, ..., J,,, J; < --- <J,,,
satisfying (5). Now choose L; and R, in X so that

L;<R;, LioR,=J;, (—=1)'p(L)>0, (—1)'p(R)>0, i=2,..,m—1.

Since p(I) is a continuous function of 7, there exist m — 1 nontrivial inter-
vals X, .., K,,_,, satisfying p(K,) =0, i=1,..,m—1and K, (R;, L/, ,),
i=1,.,m-—1, where Ry=J,and L,,=J,,. Thus K, < --- <K,,_;. |

We can characterize QT-systems as follows.

THEOREM 6. Let G=span{gi, .., g,} <Cla,b]. Then the following
statements are equivalent:

(@) {g1,.8n} is a QT-system;
(b) For any weakly increasing intervals I, ..., I,

DIy, .., I,) #0;

(c) If peG satisfies p(I,)=0, i=1,..,n, for a weakly increasing
system of intervals {I,, .., I,} < X, then p=0;

(d) {gi,.»8n} is a weak Chebyshev system on [a,b] and every
nonzero p € G does not vanish on any nontrivial subinterval.

Proof. (b)<>(c) By means of the well kno_wn arguments.

(a)=>(c) Suppose on the contrary that p#0 and p(I,)=0,
i=1,..,n, with {I;}7 being weakly increasing. Taking x so that
min{/,,I} }<x<I} and denoting J,=(I;,x), J,,,=(x,I}) and
Ji=1I,i=1,.,n—1, we see that J,, .. J, , are also weakly increasing
and satisfy (—1) ep(J;})=0, i=1,..,n+1, with e=1 or —1, fixed, since
p(J)+p(J,.)=p,)=0. By Lemma 8 we obtain » intervals K|, .., K,,,
satisfying K, < --- <K,, such that p(K;)=0, i=1,..,n Obviously
D(K,, .., K,)=0, a contradiction.

(c)=(d) First we easily see that every nonzero p € G does not vanish
on any nontrivial subinterval. Next suppose to the contrary that pe G
has n sign changes on (a, b), say, (—1) p(x;)>0, i=1,..,n+1, where
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Xy < -+ <X,,;. Thus we may choose I,<(x,, x;. ), so that p(I,)=0,
i=1, .., n, contradicting (c).

(dy=(a) Assume that {g,,..,g,} is not a Q7-system. Then there
exist increasing intervals I, .., I,, such that D(J, .., I,) =0. Hence there is
a peG\{0} such that p(f,)=0, i=1, .., n Since p(x) is not identically
equal to zero on I, p has at least one sign change on [, i=1, .., n. So we
have totally at least » sign changes. This contradiction proves the implica-
tion (d)=>(a). 1

Combining Theorem 6 and Lemma 8 the following corollary is

immediate.

COROLLARY 1. Let G=span{gy,..g,} <Cla, b] such that g, .. g,

forms a QT-system. Let {1, .., I, } <X be weakly increasing and e=1 or

—1, fixed. If pe G satisfies (—1) ep(I) 20, i=1,..,n+1, then p=0.

From Theorem 6 we obtain directly

CoOROLLARY 2. A Chebyshev system must be a QT-system.

LemMMa 9. Let G be an n-dimensional QT-subspace of Cla,b]. Let a
system of extended intervals {I,}7:={I} U {x,} be increasing, where
{I'}c X and {x.}<(a,b). Suppose m<n. Then there exists a nonzerc
Sfunction pe G such that

(a) p(ll)zoﬂ l=1’9m7

(b) p changes sign on each I,, i=1, .., m (if I,= x,, this means that p
changes sign at x,);

(c) p has exactly m sign changes on [a, b].

Proof. Put for ¢ >0 sufficiently small

f(b—(n—Dt,b—(n—i—1)1), i=m+1,.,n—1
if m<n—1

{(x;—t,x;+1) if Ie{x:}

I,-\{(U [b—(n—l)t,b—(n—l—l)t])u(U {xk~t,xk+t]>}
! k

\if Le{l}}.

We see that {J,} is also increasing if >0 is sufficiently small. Since G is
a QT-subspace, there exists a nonzero function p,e G such that p(J,) =0,
i=1,..,n—1, p changes sign on each J,, i=1,.,n—1 and has no sign
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change in each interval (J},J., ), i=0,..,n—1, where Jf =a and
J 7 =b. Furthermore we assume that | p,| =1. Letting 7|0, we select a
limit function p e G satisfying

(1) lrl=1

(2) p(Iz)zos l=13 (4] m;

(3) p does not change sign in each interval (I;*,1;,,), i=0,..,m,
where I =a and I, ,=D>. It is easy to see that p changes sign on each

I, i=1, .., m and has exactly m sign changes. This completes the proof. |

The main result in the present section is as follows.

THEOREM 7. Let G =span{g,,..,g,} <C[a, b] be an n-dimensional
QT-subspace. Let

feCla,bI\G, peG, r=f-p,  s(I)=sgnr()
Then the following statements are equivalent:

(a) p is a best approximation to f from G,

(b) There does not exist a g€ G such that s(I} q(I)>0 for all Ie X, ;

(g) The. origin ‘of n space lies in the convex hull of the set
{s()I:1€ X,}, where I=(g,(I), ... g,(I));

(d) max,.y s(I)g(I)=0 for all g G;

(e) max, . s(I)g(I)>0 for all ge G\{0};

) N.zn+1.

Moreover, the conclusions remain true if we replace X, by any one of X ¥,
XM, and X7.

Proof. Theorem 5 already contains the equivalences (a)<>(b)<
(c)<=(d). We now show the other equivalences. Denote N=AN, and
X7 ={I, .., Iy} with I, < ... <I,. Assume without loss of generality that
s(1;)>0.

{b)=(f) Suppose to the contrary that N <n. Put

;. 1%, if i=odd
K=<U},1)) if i=evenandI} <I;  (i=1,.,N—1).
Iy if i=evenand I} =1

i+1°

Obviously the system of extended intervals {K,, ..., K, _,} is increasing. By
Lemma 9 there is a nonzero ge G such that (1) ¢(K;)=0, i=1,.,N—1;
(2) g changes sign on each interval K;, i=1,.., N—1; (3) ¢ has exactly
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N — 1 sign changes on [a, b]. We assume that g(Z,} >0 (taking —q instead
of ¢ if necessary). Denote K,=[a, K; ) and Ky=(K5_,, 5]

Assertion. If K, is nontrivial for 0 <i< N then
(—1)*'q((K;7,x))>0, xeK,i>0
and
(=1)*1q((x,K}))<0, =xeK,i<N.
There are three cases to be discussed.

Case 1. O0<i<N.
In this case it follows from ¢(K;)=0 that

q((K;, x))= —q((x, K;")).
Since g(/,) >0 and ¢ has exactly one sign change on K|,
(=11 q((K7,x))>0
and

(=1 g((x K1) <0,

Especially, for i=1 and i=N —1 we obtain
q((Ky,x))>0 (6)
and
(=% q((x, K3 _1))<0. (7

Case 2. i=0.

Since g has no sign change on K, by (6) we obtain ¢g((x, K] )) > 0. This
proves the assertion when i=0.

Case 3. i=N.

Since ¢ has no sign change on K, if K, _, ¢ {x,} we obtain by (7) that
(—DY q((K5,x))<0or (—1)"*! g((K 5, x))>0, which is the assertion
when i= N. Clearly this assertion is also valid for Ky_ ;€ {x,}.

Now let 7€ X, be arbitrary. Then the interval I must contain an
odd number of Ijs, say, I=>([;u --- Ul ), where j=1, j+2k<N,
k>0, Thus I>(K;u---UK; 5 ) Letting L=(",K},) and
R=(K;, 5,1"), we have that gq(I)=q(L)+q(K;w --- VK, 5 )+
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g(Ry=¢g(L)+g(R). If L#0 and I €K, , then (—1)¢(L)<0, ie,
(—1)/*1g(L)>0; otherwise g(L)=0. Also, if R#0 and I*eK;, 5
then (—1)/+**+!1g(R)>0, ie, (—1)*'¢g(R)>0; otherwise g(R)=0.
Thus (—1)/*! q(I)>0 since g(L)=0 and ¢(R)=0 may not occur
simultaneously. According to the assumption that s(/;) >0 we conclude
that s(I)=s(I,)=(—1)""s(l;)=(—1)’*' and whence s(I)g(I)>0,
contradicting (b).

(f)=>(e) Assume (c) does not hold and let g€ G\ {0} satisfy max,_,
s(1) g(I)<0. Whence max; ,» s(I)g(1)<0 or s(;) ¢(I)<0, i=1, .., N.
Since s(I,)= (—1)"*' (1)),

(_l)is(ll) q(11)<05 i= 1’ ees N.
By Corollary 1, g=0, a contradiction.
(e)=>(d) Trivial

In the proof of (f)=-(e) we have actually shown that (f) implies
max, yn s(I) g(I) >0 for all ge G\{0}. Similarly, (f) implies
max . yu s(I) g(I)>0 for all ge G\{0} and implies max, . s(I) q(I)>0
for all ge G\{0}. On the other hand, the implications (e):(d): ()=
(b)=(a) = (f) remain valid if we replace X, by any one of X, X,
and X¥. 1

THEOREM 8. Let G=span{g,,..,g,} =Cla,b] be an n-dimensional
QT-subspace and f € C[a, b1\G. Let pe G satisfy

(=De(f)—pI))=0, i=1,.,n+1, (8)
where {I[,} <X, I, < --- <I,,,, and e=1 or —1, fixed. Then

qlgg If=qll> min f(L)—p(L)l

SIsH

Equality can occur if and only if p is a best approximation to f and
{L}cX,_,.

Proof. Letting p* € G be a best approximation to f,
If—p*l < _min | f(;) = p(L)l
implies that
(—1) e(p*(1,)— p(1,)) =0, i=1,.,n+1

By Corollary 1 we must have p=p* and {I,} <X, ,. Conversely, if p is
a best approximation to fand {I,} < X, , then equality occurs. ||
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4. UNIQUENESS

THEOREM 9. Let p be a best approximation from G to fe Cla, bl If G
is a QT-subspace of C[a, b], then p is unique.

Proof. If feG then p=f is unique. Now suppose f¢G. Let p*e@G
be another best approximation. Then for X7 = {I, .1 fop},
i< <Iy,_, we have (8) with e= —sgn(f(,)— p({,)) and ||/ — p*| =
I f— pll=min{|f(I;)— p(I)|:1<i< N, ,}. From Theorem8 it follows
that p=p*. |}

By the same arguments as in the proof of [1, p. 80, Strong Unicity
Theorem ] we obtain the following.

THECREM 10. Let p be a best approximation from G to fe Cla, b]. If G
is an n-dimensional QT-subspace of Cla, b], then there exists a constant
v >0 depending on f such that for any qe G

If—aql =1f—pl+71p—ql

Let G be an n-dimensional QT-subspace of Cla,b]). Then to each
feCla, b] let 1f € G be the (unigque) best approximation to f. An analysis
similar to the proof of the theorem in [ 1, p. 82] gives

THEOREM 11. Let G be an n-dimensional QT-subspace of Cla, b. Then

to each fyeCla, b} there corresponds a number A >0 such that for all
feCla, b]

Itf = tholl <AIS = foll.
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