The Chebyshev Theory of a Variation of L Approximation*

YING GUANG SHI

Computing Center, Chinese Academy of Sciences, P.O. Box 2719, Beijing, China 100080

Communicated by Allan Pinkus

Received April 7, 1986; revised January 16, 1991

A new method of approximation is proposed which maintains almost all of the essentials of the Chebyshev theory of best uniform approximation, while also using an L-type measure of approximation. © 1991 Academic Press, Inc.

1. Introduction

In a recent paper Pinkus and Shisha [2] proposed a new method of approximation which maintains many of the essentials of the classical theory of best uniform approximation, while also using an L^q -type $(1 \le q < \infty)$ measure of approximation. But, as they mention, their "distance" function is not derived from a norm. Moreover, the Chebyshev's alternation characterization is not complete for the gauge $\|\cdot\|$ [2, Theorem 3.1], and a best approximation does not necessarily exist for the gauge $\|\cdot\|$ * [2, Theorem 2.5].

In this paper we propose another new method of approximation which is based on a norm and maintains almost all of the essentials of the Chebyshev theory of best uniform approximation, while also using an L-type measure of approximation.

Let C[a, b] denote the class of real-valued functions continuous on [a, b]. For $f \in C[a, b]$ we define

$$||f|| = \sup \left\{ \left| \int_{c}^{d} f(x) \, dx \right| : a \leqslant c \leqslant d \leqslant b \right\}. \tag{1}$$

It is easy to see that the supremum is attained. In the next section we shall see that this is indeed a norm.

^{*} Supported by the Science Fund of the Chinese Academy of Sciences.

Let G be an n-dimensional subspace of C[a, b]. Our problem is, given $f \in C[a, b]$, find a $p \in G$ such that

$$||f-p|| = \inf_{q \in G} ||f-q||.$$

Such a function p (if any) is defined to be a best approximation to f from G.

In Section 2 we shall discuss some properties of this norm. Sections 3 and 4 are devoted to developing characterizations and uniqueness of best approximation, respectively.

2. Preliminaries

First we introduce some notation and definitions. Define $X := \{I = (c, d) : I \subset [a, b]\}$. We adopt the convention that X contains the unique "zero" element $0 = \phi$. If $I = (c, d) \in X \setminus \{0\}$, we write $I^- = c$ and $I^+ = d$. $I_m \to I := I_m^- \to I^-$ and $I_m^+ \to I^+$. In what follows we always assume that $f \in C[a, b]$.

For ease of notation we set

$$f(I) := \int_{I} f(x) \, dx$$

and

$$X_f := \{I \in X : |f(I)| = ||f||\}.$$

With this notation (1) may be rewritten as

$$||f|| = \sup_{I \in X} |f(I)|.$$
 (2)

LEMMA 1. If $I \in X_f$, then $I^-, I^+ \in Z(f) \cup \{a, b\}$, where $Z(f) = \{x \in [a, b]: f(x) = 0\}$.

Proof. Suppose on the contrary that $I^- \notin Z(f) \cup \{a, b\}$. We assume without loss of generality that $f(I) = \|f\|$. If $f(I^-) > 0$ (<0), then $f((I^- - t, I^+)) > f(I) = \|f\|$ for t > 0 (<0) sufficiently small. This contradiction proves $I^- \in Z(f) \cup \{a, b\}$. Similarly $I^+ \in Z(f) \cup \{a, b\}$.

THEOREM 1. $\|\cdot\|$ is a norm and $\|f\| = \sup\{|f(I)|: I^-, I^+ \in Z(f) \cup \{a, b\}\}.$

Proof. It is easy to check that $\|\cdot\|$ is a norm. For example, for the triangle inequality we see that

$$||f + g|| = \sup_{I \in X} |f(I) + g(I)| \le \sup_{I \in X} |f(I)|$$
$$+ \sup_{I \in X} |g(I)| = ||f|| + ||g||.$$

The latter conclusion of the theorem follows directly from Lemma 1.

By Theorem 1 the existence theorem in [1, p. 20] guarantees that to each $f \in C[a, b]$ there exists at least one function $p \in G$ which best approximates f.

Now we give some properties of X_f .

LEMMA 2. Let $I, J \in X_{\ell}$.

- (a) If f(I) = f(J) with $I \cap J \neq 0$, then $f(I \setminus J) = f(J \setminus I) = 0$ and $f(I \cap J) = f(I \cup J) = f(I)$;
 - (b) If f(I) = f(J) with $I \supset J$, then $f((I^-, J^-)) = f((J^+, I^+)) = 0$;
- (c) If f(I) = -f(J) with $I^- \leq J^-$ and $I^+ \leq J^+$, then $f(I \cap J) = 0$ and $f(I \setminus J) = -f(J \setminus I) = f(I)$;
 - (d) If f(I) = -f(J) with $I \supset J$, then $f((I^-, J^-)) = f((J^+, I^+)) = f(I)$.

Proof. We assume without loss of generality that f(I) = ||f||. Denote $L = (I^-, J^-)$ and $R = (J^+, I^+)$.

- (a) Since $f(I \setminus J) = f(I) f(I \cap J) = ||f|| f(I \cap J) \ge 0$ and $f(I \setminus J) = f(I \cup J) f(J) = f(I \cup J) ||f|| \le 0$, $f(I \setminus J) = 0$. Similarly $f(J \setminus I) = 0$. Whence $f(I \cap J) = f(I \cup J) = f(I)$.
- (b) It follows from (a) that f(L)+f(R)=0. Since $f(L)=f(L\cup J)-f(J)\leqslant 0$ and $f(R)=f(J\cup R)-f(J)\leqslant 0$, f(L)=f(R)=0.
- (c) Since $f(I \cap J) = f(I) f(I \setminus J) \ge 0$ and $f(I \cap J) = f(J) f(J \setminus I) \le 0$, $f(I \cap J) = 0$. Hence $f(I \setminus J) = -f(J \setminus I) = f(I)$.
- (d) That f(L) + f(R) = f(I) f(J) = 2f(I) implies f(L) = f(R) = f(I).

LEMMA 3. Let I, J, and K satisfy $I^+ = K^-$ and $K^+ = J^-$. Let I, $J \in X_f$. Then

- (a) If f(I) = f(J), then f(K) = -f(I);
- (b) If f(I) = -f(J), then f(K) = 0.

Proof. As before, we assume f(I) = ||f||.

- (a) Since $f(K) = f(I \cup K \cup J) f(I) f(J) \le -f(I)$, f(K) = -f(I).
- (b) Since $f(K) = f(I \cup K) f(I) \le 0$ and $f(K) = f(J \cup K) f(J) \ge 0$, f(K) = 0.

In order to describe the further properties of X_f we need the following definitions.

DEFINITION 1. Let $f \neq 0$. An $I \in X_f$ is said to be a definite interval of f if there is no $J \subset I$ satisfying f(J) = -f(I). The set of all definite intervals of f is denoted by X_f^* .

An $I \in X_f^*$ is said to be a maximal (resp. minimal) definite interval of f if there is no $J \supset I$ (resp. $J \subset I$) satisfying $J \in X_f^*$ and $J \ne I$. The set of all maximal (resp. minimal) definite intervals of f is denoted by X_f^M (resp. X_f^m).

Remark. By the definition and Lemma 2 it is easy to see that if I, $J \in X_f^*$ with f(I) = f(J) and $I \cap J \neq 0$ then $I \cup J \in X_f^*$.

DEFINITION 2. $\{I_1, ..., I_m\} \subset X \setminus \{0\}$ is said to be weakly increasing if

- (a) $I_i^- < I_{i+1}^-$ and $I_i^+ < I_{i+1}^+$, i = 1, ..., m-1;
- (b) $I_i^+ < I_{i+2}^-$, i = 1, ..., m-2.

If I and J are nonempty subintervals of [a, b], I < J means that x < y for all $x \in I$ and all $y \in J$.

 $\{I_1, ..., I_m\} \subset X \setminus \{0\}$ is said to be increasing if $I_1 < \cdots < I_m$.

A system of extended intervals $I_1, ..., I_m$, i.e., $I_i \in X$ or $I_i = [x, x] := x$, $x \in [a, b]$, is said to be increasing if $I_1 < \cdots < I_m$.

Remark. It is easy to see that if $\{I_1, ..., I_m\}$ is increasing (resp. weakly increasing) then any subset $\{I_{i_k}\}$ of $\{I_1, ..., I_m\}$ with $i_1 < i_2 < \cdots$ is also increasing (resp. weakly increasing).

LEMMA 4. Let $f \neq 0$. Each $I \in X_f$ contains an interval $J \in X_f^*$ with f(I) = f(J).

Proof. Suppose to the contrary that for some $I \in X_f$ such an interval J does not exist. Then for $I_0 \equiv I$ there exists a $J_1 \subset I_0$ satisfying $f(J_1) = -f(I)$. By Lemma 2 we have that $I_0^- < J_1^- < J_1^+ < I_0^+$ and $f(I_1) = f(I)$, where $I_1 = (I_0^-, J_1^-)$ satisfies $J_1 \subset I_0 \setminus I_1$. We can by induction obtain $\{I_i\}$ and $\{J_i\}$ which satisfy $I_i \subset I_{i-1}$, $J_i \subset I_{i-1} \setminus I_i$, $f(I_i) = f(I)$, and $f((J_i) = -f(I)$, i = 1, 2, ... It is easy to see that the $\{J_i\}$ are all disjoint, a contradiction. This completes the proof of the lemma. ■

LEMMA 5. Each $I \in X_f^*$ must be contained in a unique interval $J \in X_f^M$.

Proof. Put

$$J^{-} = \inf\{K^{-}: K^{+} = I^{+} \text{ and } K \in X_{f}^{*}\},$$

$$J^{+} = \sup\{K^{+}: K^{-} = I^{-} \text{ and } K \in X_{f}^{*}\}.$$

Denote $L = (J^-, I^+)$, $R = (I^-, J^+)$, and $J = L \cup R$.

First, we see that f(L) = f(R) = f(I), whence f(J) = f(I). Thus $J \in X_f$.

Next, we prove that $J \in X_f^*$. Suppose to the contrary that there is a $K \subset L$ satisfying f(K) = -f(I). Thus, if $K^- = L^-$, then $f(K) = f(L \cap K) = 0$ by Lemma 2, and if $K^- > L^-$, then there is a $K_1 \in X_f^*$ such that $K_1 \supset (K \cup L)$ and $K_1^+ = L^+$. Both of them are impossible. This contradiction proves $L \in X_f^*$. Similarly $R \in X_f^*$. Then $J \in X_f^*$.

On the other hand, suppose that there is a $K \in X_f^*$ with $K \supset J$. Then it is easy to check that $K_1 := (K^-, L^+) \supset L$ and $K_1 \in X_f^*$. So we must have $K_1 = L$. Similarly $(L^-, K^+) = R$. Thus K = J and $J \in X_f^M$.

The uniqueness is obvious.

LEMMA 6. Let $I, J \in X_f^M$ satisfy f(I) = f(J) with $I \neq J$ and $I^- \leq J^-$. Then

- (a) $I \cap J = 0$;
- (b) There is a $K \in X_f^M$ satisfying f(K) = -f(I) and for which $\{I, K, J\}$ is weakly increasing.
- *Proof.* (a) If $I \cap J \neq 0$, by the remark after Definition 1 we have $I \cup J \in X_f^*$, which is impossible because $J \in X_f^M$. So $I \cap J = 0$.
- (b) By Lemma 3 we see that $f(K_1) = -f(I)$, where $K_1 := (I^+, J^-)$. Using Lemma 4 we may choose a $K_2 \in X_f^*$ with $K_2 \subset K_1$ and $f(K_2) = -f(I)$. By virtue of Lemma 5 we can find a $K \in X_f^M$ with $K \supset K_2$ and f(K) = -f(I). Clearly $\{I, K, J\}$ is weakly increasing.

THEOREM 2. X_f^M is finite. Moreover $X_f^M = \{I_i\}_1^N$ with $I_1^- \leqslant \cdots \leqslant I_N^-$ is weakly increasing and satisfies $f(I_{i+1}) = -f(I_i)$, i = 1, 2, ..., N-1.

Proof. By Lemma 6 the intervals in $\{J \in X_f^M : f(J) > 0\}$ and the intervals in $\{K \in X_f^M : f(K) < 0\}$ are all mutually disjoint, respectively. Whence they are finite and may be denoted by $\{J_i\}_1^m$ and $\{K_i\}_1^n$ with $J_1 < \cdots < J_m$ and $K_1 < \cdots < K_n$, respectively. Let their union be $\{I_i\}_1^N$ satisfying $I_1^- \le \cdots \le I_N^-$. According to Lemma 6 we assert that $\{I_i\}_1^N$ is weakly increasing and satisfies $f(I_{i+1}) = -f(I_i)$, i = 1, ..., N-1.

Being parallel to X_f^M we given the properties of X_f^m .

LEMMA 7. Each $I \in X_f^*$ must contain a unique interval $J \in X_f^m$.

Proof. Put

$$J^{-} = \sup\{K^{-}: K^{+} = I^{+} \text{ and } K \in X_{f}^{*}\},$$

 $J^{+} = \inf\{K^{+}: K^{-} = I^{-} \text{ and } K \in X_{f}^{*}\},$
 $J = (J^{-}, J^{+}).$

The same arguments as in the proof of Lemma 5 give the one of the lemma. ■

THEOREM 3. X_f^m is finite. Moreover $X_f^m = \{I_i\}_1^N$ with $I_1^- \leqslant \cdots \leqslant I_N^-$ is increasing and satisfies $f(I_{i+1}) = -f(I_i)$, i = 1, ..., N-1.

Proof. It is noted that if $I, J \in X_f^m$ then either I = J or $I \cap J = 0$. In fact $I \neq J$ and $I \cap J \neq 0$ imply by Lemma 2 that $f(I \cap J) = f(I)$ when f(I) = f(J), and that $f(I \setminus J) = f(I)$ when f(I) = -f(J), contradicting $I, J \in X_f^m$. Thus we have that either I = J or $I \cap J = 0$. Therefore, X_f^m is finite. Moreover X_f^m may be written as $\{I_i\}_1^N, I_1 < \cdots < I_N$, satisfying $f(I_{i+1}) = -f(I_i)$, i = 1, ..., N-1.

The following theorem describes the relation between X_f^M and X_f^m where "card" denotes "the cardinality of."

THEOREM 4. card $X_f^M = \text{card } X_f^m$, which we denote by N_f . Furthermore, if $X_f^M = \{I_1, ..., I_{N_f}\}$ and $X_f^m = \{J_1, ..., J_{N_f}\}$ are weakly increasing, then $J_i \subset I_i$, $i = 1, ..., N_f$, and $J_i = (I_{i-1}^+, I_{i+1}^-)$, $i = 2, ..., N_f - 1$.

Proof. By Lemmas 5 and 7 we see that card $X_f^M = \text{card } X_f^m$ and $J_i \subset I_i$, $i = 1, ..., N_f$. By Lemma 3 and Definition 1, we have that $(I_{i-1}^+, I_{i+1}^-) \in X_f^m$, $i = 2, ..., N_f - 1$. Whence $J_i = (I_{i-1}^+, I_{i+1}^-)$, $i = 2, ..., N_f - 1$. ▮

3. CHARACTERIZATION

THEOREM 5. Let $G = \text{span}\{g_1, ..., g_n\}$ be an n-dimensional subspace of C[a, b], $f \in C[a, b] \setminus G$, $p \in G$, r = f - p and s(I) = sgn r(I). Then the following statements are equivalent:

- (a) p is a best approximation to f from G;
- (b) There does not exist a $q \in G$ such that s(I) q(I) > 0 for all $I \in X_r$;
- (c) The origin of n space lies in the convex hull of the set $\{s(I)\hat{I}: I \in X_r\}$, where $\hat{I} = (g_1(I), ..., g_n(I))$;
 - (d) $\max_{I \in X} s(I) q(I) \ge 0$ for all $q \in G$.

Proof. It is noted that X as well as X_r are all compact. As usual, we

denote by C(X) the class of continuous functions on X. Then f and g_i 's, as functions of I on X, are also elements of C(X). Applying Theorem 1.3 of Chap. II in [3, p. 178] we directly get $(a) \Leftrightarrow (c)$. Meanwhile, since the set $\{s(I)\hat{I}: I \in X_r\}$ is a compact set of the usual n-dimensional space, according to [1, p. 19], Theorem on Linear Inequalities] we assert $(b) \Leftrightarrow (c)$. Finally, the equivalence $(b) \Leftrightarrow (d)$ is obvious.

In order to establish an alternation theorem we need a further condition on $\{g_1, ..., g_n\}$, which we shall give in the following definition.

DEFINITION 3. A system of functions $\{g_1, ..., g_n\} \subset C[a, b]$ is said to be a quasi-Chebyshev system on [a, b] (or a QT-system), if

$$D(I_1, ..., I_n) := \det\{g_j(I_i)\}_{i,j=1}^n \neq 0$$

whenever $\{I_i\}_1^n \subset X$ is increasing. An *n*-dimensional subspace G of C[a, b] is called a QT-subspace if it has a basis which is a QT-system.

We next establish a preliminary result, which is of independent interest.

LEMMA 8. Let $p \in C[a, b]$. Let $\{I_i\}_1^m \subset X$ be weakly increasing and e = 1 or -1, fixed. Suppose

$$(-1)^{i} ep(I_{i}) \ge 0, \qquad i = 1, ..., m.$$
 (3)

Then the following statements hold:

(a) There exist m intervals $J_1, ..., J_m, J_1 < \cdots < J_m$, such that

$$(-1)^{i} ep(J_{i}) \ge 0, \qquad i = 1, ..., m.$$
 (4)

Furthermore, if p(x) is not identically equal to zero on any nontrivial subinterval, $\{J_i\}_{i=1}^m$ may be chosen so that

$$(-1)^{i} ep(J_{i}) > 0, i = 1, ..., m;$$
 (5)

(b) If m > 1, there exist m - 1 intervals $K_1, ..., K_{m-1}, K_1 < \cdots < K_{m-1}$, such that $p(K_i) = 0$, i = 1, ..., m - 1.

Proof. Assume without loss of generality that e = 1.

(a) Put

$$\begin{split} &J_1 = I_1, & I_2' = I_2 & \text{if} & I_1 \cap I_2 = 0 \\ &J_1 = I_1 \backslash I_2, & I_2' = I_1 \cap I_2 & \text{if} & I_1 \cap I_2 \neq 0 \text{ and } p(I_1 \cap I_2) \geqslant 0 \\ &J_1 = I_1 \cap I_2, & I_2' = I_2 \backslash I_1 & \text{if} & I_1 \cap I_2 \neq 0 \text{ and } p(I_1 \cap I_2) < 0. \end{split}$$

It is easy to see that $p(J_1) \le 0$, $p(I_2') \ge 0$, and $J_1 \cap I_2' = 0$. Meanwhile $\{I_2', I_3, ..., I_m\}$ is also weakly increasing and satisfies $p(I_2') \ge 0$ and $(-1)^i p(I_i) \ge 0$, i = 3, ..., m. By induction we can obtain $\{J_i\}_1^m$, $J_1 < \cdots < J_m$, which satisfies (4).

If p(x) is not identically equal to zero on any nontrivial subinterval, then $(-1)^i p(J_i) \ge 0$ implies that there is a subinterval of J_i , denoted again by J_i , satisfying $(-1)^i p(x) > 0$ on J_i . Whence (5) follows.

(b) If $p(x) \equiv 0$ on some nontrivial subinterval, the conclusion is trivial. Otherwise by Part (a) there are m intervals $J_1, ..., J_m, J_1 < \cdots < J_m$, satisfying (5). Now choose L_i and R_i in X so that

$$L_i < R_i, L_i \cup R_i \subset J_i, (-1)^i p(L_i) > 0, (-1)^i p(R_i) > 0, i = 2, ..., m-1.$$

Since p(I) is a continuous function of I, there exist m-1 nontrivial intervals $K_1, ..., K_{m-1}$, satisfying $p(K_i) = 0$, i = 1, ..., m-1 and $K_i \subset (R_i^-, L_{i+1}^+)$, i = 1, ..., m-1, where $R_1 = J_1$ and $L_m = J_m$. Thus $K_1 < \cdots < K_{m-1}$.

We can characterize QT-systems as follows.

THEOREM 6. Let $G = \text{span}\{g_1, ..., g_n\} \subset C[a, b]$. Then the following statements are equivalent:

- (a) $\{g_1, ..., g_n\}$ is a QT-system;
- (b) For any weakly increasing intervals $I_1, ..., I_n$,

$$D(I_1, ..., I_n) \neq 0;$$

- (c) If $p \in G$ satisfies $p(I_i) = 0$, i = 1, ..., n, for a weakly increasing system of intervals $\{I_1, ..., I_n\} \subset X$, then p = 0;
- (d) $\{g_1, ..., g_n\}$ is a weak Chebyshev system on [a, b] and every nonzero $p \in G$ does not vanish on any nontrivial subinterval.
 - *Proof.* (b) \Leftrightarrow (c) By means of the well known arguments.
- (a) \Rightarrow (c) Suppose on the contrary that $p \neq 0$ and $p(I_i) = 0$, i = 1, ..., n, with $\{I_i\}_1^n$ being weakly increasing. Taking x so that $\min\{I_n^-, I_{n-1}^+\} < x < I_n^+$ and denoting $J_n = (I_n^-, x)$, $J_{n+1} = (x, I_n^+)$ and $J_i = I_i$, i = 1, ..., n-1, we see that $J_1, ..., J_{n+1}$ are also weakly increasing and satisfy $(-1)^i ep(J_i) \geqslant 0$, i = 1, ..., n+1, with e = 1 or -1, fixed, since $p(J_n) + p(J_{n+1}) = p(I_n) = 0$. By Lemma 8 we obtain n intervals $K_1, ..., K_n$, satisfying $K_1 < \cdots < K_n$, such that $p(K_i) = 0$, i = 1, ..., n. Obviously $D(K_1, ..., K_n) = 0$, a contradiction.
- (c) \Rightarrow (d) First we easily see that every nonzero $p \in G$ does not vanish on any nontrivial subinterval. Next suppose to the contrary that $p \in G$ has n sign changes on (a, b), say, $(-1)^i p(x_i) > 0$, i = 1, ..., n + 1, where

 $x_1 < \cdots < x_{n+1}$. Thus we may choose $I_i \subset (x_i, x_{i+1})$, so that $p(I_i) = 0$, i = 1, ..., n, contradicting (c).

 $(d)\Rightarrow (a)$ Assume that $\{g_1,...,g_n\}$ is not a QT-system. Then there exist increasing intervals $I_1,...,I_n$ such that $D(I_1,...,I_n)=0$. Hence there is a $p\in G\setminus\{0\}$ such that $p(I_i)=0$, i=1,...,n. Since p(x) is not identically equal to zero on I_i , p has at least one sign change on I_i , i=1,...,n. So we have totally at least n sign changes. This contradiction proves the implication $(d)\Rightarrow (a)$.

Combining Theorem 6 and Lemma 8 the following corollary is immediate.

COROLLARY 1. Let $G = \text{span}\{g_1, ..., g_n\} \subset C[a, b]$ such that $g_1, ..., g_n$ forms a QT-system. Let $\{I_1, ..., I_{n+1}\} \subset X$ be weakly increasing and e = 1 or -1, fixed. If $p \in G$ satisfies $(-1)^i$ ep $(I_i) \ge 0$, i = 1, ..., n+1, then p = 0.

From Theorem 6 we obtain directly

COROLLARY 2. A Chebyshev system must be a QT-system.

LEMMA 9. Let G be an n-dimensional QT-subspace of C[a, b]. Let a system of extended intervals $\{I_i\}_1^m := \{I_j'\} \cup \{x_k\}$ be increasing, where $\{I_j'\} \subset X$ and $\{x_k\} \subset (a, b)$. Suppose m < n. Then there exists a nonzero function $p \in G$ such that

- (a) $p(I_1) = 0, i = 1, ..., m;$
- (b) p changes sign on each I_i , i = 1, ..., m (if $I_i = x_k$, this means that p changes sign at x_k);
 - (c) p has exactly m sign changes on [a, b].

Proof. Put for t > 0 sufficiently small

$$J_{i} = \begin{cases} (b - (n-i)t, b - (n-i-1)t), & i = m+1, ..., n-1 \\ & \text{if } m < n-1 \\ (x_{i} - t, x_{i} + t) & \text{if } I_{i} \in \{x_{k}\} \\ I_{i} \setminus \left\{ \left(\bigcup_{l} [b - (n-l)t, b - (n-l-1)t] \right) \cup \left(\bigcup_{k} [x_{k} - t, x_{k} + t] \right) \right\} \\ & \text{if } I_{i} \in \{I'_{j}\}. \end{cases}$$

We see that $\{J_i\}$ is also increasing if t > 0 is sufficiently small. Since G is a QT-subspace, there exists a nonzero function $p_i \in G$ such that $p_i(J_i) = 0$, i = 1, ..., n - 1, p changes sign on each J_i , i = 1, ..., n - 1 and has no sign

change in each interval (J_i^+, J_{i+1}^-) , i = 0, ..., n-1, where $J_0^+ = a$ and $J_n^- = b$. Furthermore we assume that $||p_t|| = 1$. Letting $t \downarrow 0$, we select a limit function $p \in G$ satisfying

- (1) ||p|| = 1;
- (2) $p(I_i) = 0, i = 1, ..., m;$
- (3) p does not change sign in each interval (I_i^+, I_{i+1}^-) , i = 0, ..., m, where $I_0^+ = a$ and $I_{m+1}^- = b$. It is easy to see that p changes sign on each I_i , i = 1, ..., m and has exactly m sign changes. This completes the proof.

The main result in the present section is as follows.

THEOREM 7. Let $G = \text{span}\{g_1, ..., g_n\} \subset C[a, b]$ be an n-dimensional QT-subspace. Let

$$f \in C[a, b] \setminus G$$
, $p \in G$, $r = f - p$, $s(I) = \operatorname{sgn} r(I)$.

Then the following statements are equivalent:

- (a) p is a best approximation to f from G;
- (b) There does not exist a $q \in G$ such that s(I) q(I) > 0 for all $I \in X_r$;
- (c) The origin of n space lies in the convex hull of the set $\{s(I)\hat{I}: I \in X_r\}$, where $\hat{I} = (g_1(I), ..., g_n(I))$;
 - (d) $\max_{I \in X_r} s(I) q(I) \ge 0$ for all $q \in G$;
 - (e) $\max_{I \in X_r} s(I) \ q(I) > 0 \ for \ all \ q \in G \setminus \{0\};$
 - (f) $N_r \geqslant n+1$.

Moreover, the conclusions remain true if we replace X_r by any one of X_r^* , X_r^M , and X_r^m .

Proof. Theorem 5 already contains the equivalences $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d)$. We now show the other equivalences. Denote $N = N_r$ and $X_r^m = \{I_1, ..., I_N\}$ with $I_1 < \cdots < I_N$. Assume without loss of generality that $s(I_1) > 0$.

(b) \Rightarrow (f) Suppose to the contrary that $N \leqslant n$. Put

$$K_{i} = \begin{cases} (I_{i}^{-}, I_{i+1}^{+}) & \text{if} \quad i = \text{odd} \\ (I_{i}^{+}, I_{i+1}^{-}) & \text{if} \quad i = \text{even and } I_{i}^{+} < I_{i+1}^{-} \ (i = 1, ..., N-1). \\ I_{i}^{+} & \text{if} \quad i = \text{even and } I_{i}^{+} = I_{i+1}^{-}. \end{cases}$$

Obviously the system of extended intervals $\{K_1, ..., K_{N-1}\}$ is increasing. By Lemma 9 there is a nonzero $q \in G$ such that (1) $q(K_i) = 0$, i = 1, ..., N-1; (2) q changes sign on each interval K_i , i = 1, ..., N-1; (3) q has exactly

N-1 sign changes on [a, b]. We assume that $q(I_1) \ge 0$ (taking -q instead of q if necessary). Denote $K_0 = [a, K_1^-)$ and $K_N = (K_{N-1}^+, b]$.

Assertion. If K_i is nontrivial for $0 \le i \le N$ then

$$(-1)^{i+1} q((K_i^-, x)) > 0, \quad x \in K_i, i > 0$$

and

$$(-1)^{i+1} q((x, K_i^+)) < 0, \quad x \in K_i, i < N.$$

There are three cases to be discussed.

Case 1. 0 < i < N.

In this case it follows from $q(K_i) = 0$ that

$$q((K_i^-, x)) = -q((x, K_i^+)).$$

Since $q(I_1) \ge 0$ and q has exactly one sign change on K_i ,

$$(-1)^{i+1} q((K_i^-, x)) > 0$$

and

$$(-1)^{i+1} q((x, K_i^+)) < 0.$$

Especially, for i = 1 and i = N - 1 we obtain

$$q((K_1^-, x)) > 0$$
 (6)

and

$$(-1)^{N} q((x, K_{N-1}^{+})) < 0. (7)$$

Case 2. i=0.

Since q has no sign change on K_0 , by (6) we obtain $q((x, K_0^+)) > 0$. This proves the assertion when i = 0.

Case 3. i = N.

Since q has no sign change on K_N , if $K_{N-1} \notin \{x_k\}$ we obtain by (7) that $(-1)^N \ q((K_N^-, x)) < 0$ or $(-1)^{N+1} \ q((K_N^-, x)) > 0$, which is the assertion when i = N. Clearly this assertion is also valid for $K_{N-1} \in \{x_k\}$.

Now let $I \in X_r$ be arbitrary. Then the interval I must contain an odd number of $I_i's$, say, $I \supset (I_j \cup \cdots \cup I_{j+2k})$, where $j \geqslant 1$, $j+2k \leqslant N$, $k \geqslant 0$. Thus $I \supset (K_j \cup \cdots \cup K_{j+2k-1})$. Letting $L = (I^-, K_{j-1}^+)$ and $R = (K_{j+2k}^-, I^+)$, we have that $q(I) = q(L) + q(K_j \cup \cdots \cup K_{j+2k-1}) + q(K_j \cup \cdots \cup K_{j+2k-1})$

q(R) = q(L) + q(R). If $L \neq 0$ and $I^- \in K_{j-1}$ then $(-1)^j q(L) < 0$, i.e., $(-1)^{j+1} q(L) > 0$; otherwise q(L) = 0. Also, if $R \neq 0$ and $I^+ \in K_{j+2k}$ then $(-1)^{j+2k+1} q(R) > 0$, i.e., $(-1)^{j+1} q(R) > 0$; otherwise q(R) = 0. Thus $(-1)^{j+1} q(I) > 0$ since q(L) = 0 and q(R) = 0 may not occur simultaneously. According to the assumption that $s(I_1) > 0$ we conclude that $s(I) = s(I_j) = (-1)^{j+1} s(I_1) = (-1)^{j+1}$ and whence s(I) q(I) > 0, contradicting (b).

 $(f)\Rightarrow$ (e) Assume (c) does not hold and let $q\in G\setminus\{0\}$ satisfy $\max_{I\in X_r}s(I)\ q(I)\leqslant 0$. Whence $\max_{I\in X_r^m}s(I)\ q(I)\leqslant 0$ or $s(I_i)\ q(I_i)\leqslant 0$, i=1,...,N. Since $s(I_i)=(-1)^{i+1}s(I_1)$,

$$(-1)^i s(I_1) q(I_i) \le 0, i = 1, ..., N.$$

By Corollary 1, q = 0, a contradiction.

$$(e) \Rightarrow (d)$$
 Trivial.

In the proof of $(f) \Rightarrow (e)$ we have actually shown that (f) implies $\max_{I \in \mathcal{X}_r^m} s(I) \ q(I) > 0$ for all $q \in G \setminus \{0\}$. Similarly, (f) implies $\max_{I \in \mathcal{X}_r^m} s(I) \ q(I) > 0$ for all $q \in G \setminus \{0\}$ and implies $\max_{I \in \mathcal{X}_r^*} s(I) \ q(I) > 0$ for all $q \in G \setminus \{0\}$. On the other hand, the implications $(e) \Rightarrow (d) \Rightarrow (c) \Rightarrow (b) \Rightarrow (a) \Rightarrow (f)$ remain valid if we replace X_r by any one of X_r^m , X_r^M , and X_r^* .

THEOREM 8. Let $G = \text{span}\{g_1, ..., g_n\} \subset C[a, b]$ be an n-dimensional QT-subspace and $f \in C[a, b] \setminus G$. Let $p \in G$ satisfy

$$(-1)^{i} e(f(I_{i}) - p(I_{i})) \ge 0, \qquad i = 1, ..., n+1,$$
 (8)

where $\{I_i\} \subset X$, $I_1 < \cdots < I_{n+1}$, and e = 1 or -1, fixed. Then

$$\inf_{q \in G} \|f - q\| \geqslant \min_{1 \leqslant i \leqslant n+1} |f(I_i) - p(I_i)|.$$

Equality can occur if and only if p is a best approximation to f and $\{I_i\} \subset X_{f-p}$.

Proof. Letting $p^* \in G$ be a best approximation to f,

$$||f - p^*|| \le \min_{1 \le i \le n+1} |f(I_i) - p(I_i)|$$

implies that

$$(-1)^i e(p^*(I_i) - p(I_i)) \ge 0, \qquad i = 1, ..., n + 1.$$

By Corollary 1 we must have $p = p^*$ and $\{I_i\} \subset X_{f-p}$. Conversely, if p is a best approximation to f and $\{I_i\} \subset X_{f-p}$ then equality occurs.

4. Uniqueness

THEOREM 9. Let p be a best approximation from G to $f \in C[a, b]$. If G is a QT-subspace of C[a, b], then p is unique.

Proof. If $f \in G$ then p = f is unique. Now suppose $f \notin G$. Let $p^* \in G$ be another best approximation. Then for $X_{f-p}^m = \{I_1, ..., I_{N_{f-p}}\}$, $I_1 < \cdots < I_{N_{f-p}}$, we have (8) with $e = -\operatorname{sgn}(f(I_1) - p(I_1))$ and $\|f - p^*\| = \|f - p\| = \min\{|f(I_i) - p(I_i)| : 1 \le i \le N_{f-p}\}$. From Theorem 8 it follows that $p = p^*$.

By the same arguments as in the proof of [1, p. 80, Strong Unicity Theorem] we obtain the following.

THEOREM 10. Let p be a best approximation from G to $f \in C[a, b]$. If G is an n-dimensional QT-subspace of C[a, b], then there exists a constant $\gamma > 0$ depending on f such that for any $q \in G$

$$||f - q|| \ge ||f - p|| + \gamma ||p - q||.$$

Let G be an n-dimensional QT-subspace of C[a, b]. Then to each $f \in C[a, b]$ let $\tau f \in G$ be the (unique) best approximation to f. An analysis similar to the proof of the theorem in [1, p. 82] gives

THEOREM 11. Let G be an n-dimensional QT-subspace of C[a, b]. Then to each $f_0 \in C[a, b]$ there corresponds a number $\lambda > 0$ such that for all $f \in C[a, b]$

$$\|\tau f - \tau f_0\| \le \lambda \|f - f_0\|.$$

ACKNOWLEDGMENT

The author is very grateful to the referee for his (her) invaluable comments and suggestions.

REFERENCES

- 1. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- A. PINKUS AND O. SHISHA, Variations on the Chebyshev and L^q-theories of best approximation, J. Approx. Theory 35 (1982), 148-168.
- I. SINGER, "Best Approximation in Normed Linear Space by Elements of Linear Subspace," Springer-Verlag, Berlin, 1970.