The Chebyshev Theory of a Variation of \angle Approximation*

Ying Guang Shi
Computing Center, Chinese Academy of Sciences, P.O. Box 2719, Beijing, China 100080
Communicated by Allan Pinkus

Received April 7, 1986; revised January 16, 1991

Abstract

A new method of approximation is proposed which maintains almost all of the essentials of the Chebyshev theory of best uniform approximation, while also using an L-type measure of approximation. © 1991 Academic Press, Inc.

1. Introduction

In a recent paper Pinkus and Shisha [2] proposed a new method of approximation which maintains many of the essentials of the classical theory of best uniform approximation, while also using an L^{q}-type $(1 \leqslant q<\infty)$ measure of approximation. But, as they mention, their "distance" function is not derived from a norm. Moreover, the Chebyshev's alternation characterization is not complete for the gauge $\|\cdot\| \cdot \|[2$, Theorem 3.1], and a best approximation does not necessarily exist for the gauge $\|\|\cdot\|$ * $[2$, Theorem 2.5].

In this paper we propose another new method of approximation which is based on a norm and maintains almost all of the essentials of the Chebyshev theory of best uniform approximation, while also using an L-type measure of approximation.

Let $C[a, b]$ denote the class of real-valued functions continuous on $[a, b]$. For $f \in C[a, b]$ we define

$$
\begin{equation*}
\|f\|=\sup \left\{\left|\int_{c}^{d} f(x) d x\right|: a \leqslant c \leqslant d \leqslant b\right\} . \tag{1}
\end{equation*}
$$

It is easy to see that the supremum is attained. In the next section we shall see that this is indeed a norm.

[^0]Let G be an n-dimensional subspace of $C[a, b]$. Our problem is, given $f \in C[a, b]$, find a $p \in G$ such that

$$
\|f-p\|=\inf _{q \in G}\|f-q\|
$$

Such a function p (if any) is defined to be a best approximation to f from G.

In Section 2 we shall discuss some properties of this norm. Sections 3 and 4 are devoted to developing characterizations and uniqueness of best approximation, respectively.

2. Preliminaries

First we introduce some notation and definitions. Define $X:=$ $\{I=(c, d): I \subset[a, b]\}$. We adopt the convention that X contains the unique "zero" element $0=\phi$. If $I=(c, d) \in X \backslash\{0\}$, we write $I^{-}=c$ and $I^{+}=d . \quad I_{m} \rightarrow I:=I_{m}^{-} \rightarrow I^{-}$and $I_{m}^{+} \rightarrow I^{+}$. In what follows we always assume that $f \in C[a, b]$.

For ease of notation we set

$$
f(I):=\int_{I} f(x) d x
$$

and

$$
X_{f}:=\{I \in X:|f(I)|=\|f\|\} .
$$

With this notation (1) may be rewritten as

$$
\begin{equation*}
\|f\|=\sup _{I \in X}|f(I)| . \tag{2}
\end{equation*}
$$

Lemma 1. If $I \in X_{f}$, then $I^{-}, I^{+} \in Z(f) \cup\{a, b\}$, where $Z(f)=$ $\{x \in[a, b]: f(x)=0\}$.

Proof. Suppose on the contrary that $I^{-} \notin Z(f) \cup\{a, b\}$. We assume without loss of generality that $f(I)=\|f\|$. If $f\left(I^{-}\right)>0 \quad(<0)$, then $f\left(\left(I^{-}-t, I^{+}\right)\right)>f(I)=\|f\|$ for $t>0(<0)$ sufficiently small. This contradiction proves $I^{-} \in Z(f) \cup\{a, b\}$. Similarly $I^{+} \in Z(f) \cup\{a, b\}$.

Theorem 1. $\|\cdot\|$ is a norm and $\|f\|=\sup \left\{|f(I)|: I^{-}, I^{+} \in Z(f) \cup\right.$ $\{a, b\}\}$.

Proof. It is easy to check that $\|\cdot\|$ is a norm. For example, for the triangle inequality we see that

$$
\begin{aligned}
\|f+g\|= & \sup _{I \in X}|f(I)+g(I)| \leqslant \sup _{I \in X}|f(I)| \\
& +\sup _{I \in X}|g(I)|=\|f\|+\|g\| .
\end{aligned}
$$

The latter conclusion of the theorem follows directly from Lemma 1.
By Theorem 1 the existence theorem in [1, p. 20] guarantees that to each $f \in C[a, b]$ there exists at least one function $p \in G$ which best approximates f.

Now we give some properties of X_{f}.

Lemma 2. Let $I, J \in X_{f}$.
(a) If $f(I)=f(J)$ with $I \cap J \neq 0$, then $f(I \backslash J)=f(J \backslash I)=0$ and $f(I \cap J)=f(I \cup J)=f(I) ;$
(b) If $f(I)=f(J)$ with $I \supset J$, then $f\left(\left(I^{-}, J^{-}\right)\right)=f\left(\left(J^{+}, I^{+}\right)\right)=0$;
(c) If $f(I)=-f(J)$ with $I^{-} \leqslant J^{-}$and $I^{+} \leqslant J^{+}$, then $f(I \cap J)=0$ and $f(I \backslash J)=-f(J \backslash I)=f(I) ;$
(d) If $f(I)=-f(J)$ with $I \supset J$, then $f\left(\left(I^{-}, J^{-}\right)\right)=f\left(\left(J^{+}, I^{+}\right)\right)=f(I)$.

Proof. We assume without loss of generality that $f(I)=\|f\|$. Denote $L=\left(I^{-}, J^{-}\right)$and $R=\left(J^{+}, I^{+}\right)$.
(a) Since $f(I \backslash J)=f(I)-f(I \cap J)=\|f\|-f(I \cap J) \geqslant 0$ and $f(I \backslash J)=$ $f(I \cup J)-f(J)=f(I \cup J)-\|f\| \leqslant 0, f(I \backslash J)=0$. Similarly $f(J \backslash I)=0$. Whence $f(I \cap J)=f(I \cup J)=f(I)$.
(b) It follows from (a) that $f(L)+f(R)=0$. Since $f(L)=$ $f(L \cup J)-f(J) \leqslant 0$ and $f(R)=f(J \cup R)-f(J) \leqslant 0, f(L)=f(R)=0$.
(c) Since $f(I \cap J)=f(I)-f(I \backslash J) \geqslant 0$ and $f(I \cap J)=f(J)-f(J \backslash I) \leqslant 0$, $f(I \cap J)=0$. Hence $f(I \backslash J)=-f(J \backslash I)=f(I)$.
(d) That $f(L)+f(R)=f(I)-f(J)=2 f(I)$ implies $f(L)=f(R)=$ $f(I)$.

Lemma 3. Let I, J, and K satisfy $I^{+}=K^{-}$and $K^{+}=J^{-}$. Let $I, J \in X_{f}$. Then
(a) If $f(I)=f(J)$, then $f(K)=-f(I)$;
(b) If $f(I)=-f(J)$, then $f(K)=0$.

Proof. As before, we assume $f(I)=\|f\|$.
(a) Since $f(K)=f(I \cup K \cup J)-f(I)-f(J) \leqslant-f(I), f(K)=-f(I)$.
(b) Since $f(K)=f(I \cup K)-f(I) \leqslant 0$ and $f(K)=f(J \cup K)-f(J) \geqslant 0$, $f(K)=0$.

In order to describe the further properties of X_{f} we need the following definitions.

Definition 1. Let $f \neq 0$. An $I \in X_{f}$ is said to be a definite interval of f if there is no $J \subset I$ satisfying $f(J)=-f(I)$. The set of all definite intervals of f is denoted by X_{f}^{*}.

An $I \in X_{f}^{*}$ is said to be a maximal (resp. minimal) definite interval of f if there is no $J \supset I$ (resp. $J \subset I$) satisfying $J \in X_{f}^{*}$ and $J \neq I$. The set of all maximal (resp. minimal) definite intervals of f is denoted by X_{f}^{M} (resp. X_{f}^{m}).

Remark. By the definition and Lemma 2 it is easy to see that if I, $J \in X_{f}^{*}$ with $f(I)=f(J)$ and $I \cap J \neq 0$ then $I \cup J \in X_{f}^{*}$.

Definition 2. $\left\{I_{1}, \ldots, I_{m}\right\} \subset X \backslash\{0\}$ is said to be weakly increasing if
(a) $I_{i}^{-}<I_{i+1}^{-}$and $I_{i}^{+}<I_{i+1}^{+}, i=1, \ldots, m-1$;
(b) $I_{i}^{+}<I_{i+2}^{-}, i=1, \ldots, m-2$.

If I and J are nonempty subintervals of $[a, b], I<J$ means that $x<y$ for all $x \in I$ and all $y \in J$.
$\left\{I_{1}, \ldots, I_{m}\right\} \subset X \backslash\{0\}$ is said to be increasing if $I_{1}<\cdots<I_{m}$.
A system of extended intervals I_{1}, \ldots, I_{m}, i.e., $I_{i} \in X$ or $I_{i}=[x, x]:=x$, $x \in[a, b]$, is said to be increasing if $I_{1}<\cdots<I_{m}$.

Remark. It is easy to see that if $\left\{I_{1}, \ldots, I_{m}\right\}$ is increasing (resp. weakly increasing) then any subset $\left\{I_{i_{k}}\right\}$ of $\left\{I_{1}, \ldots, I_{m}\right\}$ with $i_{1}<i_{2}<\cdots$ is also increasing (resp. weakly increasing).

Lemma 4. Let $f \neq 0$. Each $I \in X_{f}$ contains an interval $J \in X_{f}^{*}$ with $f(I)=f(J)$.

Proof. Suppose to the contrary that for some $I \in X_{f}$ such an interval J does not exist. Then for $I_{0} \equiv I$ there exists a $J_{1} \subset I_{0}$ satisfying $f\left(J_{1}\right)=-f(I)$. By Lemma 2 we have that $I_{0}^{-}<J_{1}^{-}<J_{1}^{+}<I_{0}^{+}$and $f\left(I_{1}\right)=f(I)$, where $I_{1}=\left(I_{0}^{-}, J_{1}^{-}\right)$satisfies $J_{1} \subset I_{0} \backslash I_{1}$. We can by induction obtain $\left\{I_{i}\right\}$ and $\left\{J_{i}\right\}$ which satisfy $I_{i} \subset I_{i-1}, J_{i} \subset I_{i-1} \backslash I_{i}, f\left(I_{i}\right)=f(I)$, and $f\left(\left(J_{i}\right)=-f(I)\right.$, $i=1,2, \ldots$ It is easy to see that the $\left\{J_{i}\right\}$ are all disjoint, a contradiction. This completes the proof of the lemma.

Lemma 5. Each $I \in X_{f}^{*}$ must be contained in a unique interval $J \in X_{f}^{M}$.

Proof. Put

$$
\begin{aligned}
& J^{-}=\inf \left\{K^{-}: K^{+}=I^{+} \text {and } K \in X_{f}^{*}\right\}, \\
& J^{+}=\sup \left\{K^{+}: K^{-}=I^{-} \text {and } K \in X_{f}^{*}\right\} .
\end{aligned}
$$

Denote $L=\left(J^{-}, I^{+}\right), R=\left(I^{-}, J^{+}\right)$, and $J=L \cup R$.
First, we see that $f(L)=f(R)=f(I)$, whence $f(J)=f(I)$. Thus $J \in X_{f}$.
Next, we prove that $J \in X_{f}^{*}$. Suppose to the contrary that there is a $K \subset L$ satisfying $f(K)=-f(I)$. Thus, if $K^{-}=L^{-}$, then $f((K)=$ $f(L \cap K)=0$ by Lemma 2 , and if $K^{-}>L^{-}$, then there is a $K_{1} \in X_{f}^{*}$ such that $K_{1} \supset(K \cup L)$ and $K_{1}^{+}=L^{+}$. Both of them are impossible. This contradiction proves $L \in X_{f}^{*}$. Similarly $R \in X_{f}^{*}$. Then $J \in X_{f}^{*}$.

On the other hand, suppose that there is a $K \in X_{f}^{*}$ with $K \supset J$. Then it is easy to check that $K_{1}:=\left(K^{-}, L^{+}\right) \supset L$ and $K_{1} \in X_{f}^{*}$. So we must have $K_{1}=L$. Similarly $\left(L^{-}, K^{+}\right)=R$. Thus $K=J$ and $J \in X_{f}^{M}$.

The uniqueness is obvious.

Lemma 6. Let $I, J \in X_{f}^{M}$ satisfy $f(I)=f(J)$ with $I \neq J$ and $I^{-} \leqslant J^{-}$. Then
(a) $I \cap J=0$;
(b) There is a $K \in X_{f}^{M}$ satisfying $f(K)=-f(I)$ and for which $\{I, K, J\}$ is weakly increasing.

Proof. (a) If $I \cap J \neq 0$, by the remark after Definition 1 we have $I \cup J \in X_{f}^{*}$, which is impossible because $J \in X_{f}^{M}$. So $I \cap J=0$.
(b) By Lemma 3 we see that $f\left(K_{1}\right)=-f(I)$, where $K_{1}:=\left(I^{+}, J^{-}\right)$. Using Lemma 4 we may choose a $K_{2} \in X_{f}^{*}$ with $K_{2} \subset K_{1}$ and $f\left(K_{2}\right)=-f(I)$. By virtue of Lemma 5 we can find a $K \in X_{f}^{M}$ with $K \supset K_{2}$ and $f(K)=-f(I)$. Clearly $\{I, K, J\}$ is weakly increasing.

Theorem 2. X_{f}^{M} is finite. Moreover $X_{f}^{M}=\left\{I_{i}\right\}_{1}^{N}$ with $I_{1}^{-} \leqslant \cdots \leqslant I_{N}^{-}$is weakly increasing and satisfies $f\left(I_{i+1}\right)=-f\left(I_{i}\right), i=1,2, \ldots, N-1$.

Proof. By Lemma 6 the intervals in $\left\{J \in X_{f}^{M}: f(J)>0\right\}$ and the intervals in $\left\{K \in X_{f}^{M}: f(K)<0\right\}$ are all mutually disjoint, respectively. Whence they are finite and may be denoted by $\left\{J_{i}\right\}_{1}^{m}$ and $\left\{K_{i}\right\}_{1}^{n}$ with $J_{1}<\cdots<J_{m}$ and $K_{1}<\cdots<K_{n}$, respectively. Let their union be $\left\{I_{i}\right\}_{1}^{N}$ satisfying $I_{1}^{-} \leqslant \cdots \leqslant I_{N}^{-}$. According to Lemma 6 we assert that $\left\{I_{i}\right\}_{1}^{N}$ is weakly increasing and satisfies $f\left(I_{i+1}\right)=-f\left(I_{i}\right), i=1, \ldots, N-1$.

Being parallel to X_{f}^{M} we given the properties of X_{f}^{m}.
Lemma 7. Each $I \in X_{f}^{*}$ must contain a unique interval $J \in X_{f}^{m}$.

Proof. Put

$$
\begin{aligned}
J^{-} & =\sup \left\{K^{-}: K^{+}=I^{+} \text {and } K \in X_{f}^{*}\right\}, \\
J^{+} & =\inf \left\{K^{+}: K^{-}=I^{-} \text {and } K \in X_{f}^{*}\right\}, \\
J & =\left(J^{-}, J^{+}\right) .
\end{aligned}
$$

The same arguments as in the proof of Lemma 5 give the one of the lemma.

Theorem 3. X_{f}^{m} is finite. Moreover $X_{f}^{m}=\left\{I_{i}\right\}_{1}^{N}$ with $I_{1}^{-} \leqslant \cdots \leqslant I_{N}^{-}$is increasing and satisfies $f\left(I_{i+1}\right)=-f\left(I_{i}\right), i=1, \ldots, N-1$.

Proof. It is noted that if $I, J \in X_{f}^{m}$ then either $I=J$ or $I \cap J=0$. In fact $I \neq J$ and $I \cap J \neq 0$ imply by Lemma 2 that $f(I \cap J)=f(I)$ when $f(I)=f(J)$, and that $f(I \backslash J)=f(I)$ when $f(I)=-f(J)$, contradicting $I, J \in X_{f}^{m}$. Thus we have that either $I=J$ or $I \cap J=0$. Therefore, X_{f}^{m} is finite. Moreover X_{f}^{m} may be written as $\left\{I_{i}\right\}_{1}^{N}, I_{1}<\cdots<I_{N}$, satisfying $f\left(I_{i+1}\right)=-f\left(I_{i}\right)$, $i=1, \ldots, N-1$.

The following theorem describes the relation between X_{f}^{M} and X_{f}^{m} where "card" denotes."the cardinality of."

Theorem 4. card $X_{f}^{M}=\operatorname{card} X_{f}^{m}$, which we denote by N_{f}. Furthermore, if $X_{f}^{M}=\left\{I_{1}, \ldots, I_{N_{f}}\right\}$ and $X_{f}^{m}=\left\{J_{1}, \ldots, J_{N_{f}}\right\}$ are weakly increasing, then $J_{i} \subset I_{i}, i=1, \ldots, N_{f}$, and $J_{i}=\left(I_{i-1}^{+}, I_{i+1}^{-}\right), i=2, \ldots, N_{f}-1$.

Proof. By Lemmas 5 and 7 we see that card $X_{f}^{M}=\operatorname{card} X_{f}^{m}$ and $J_{i} \subset I_{i}$, $i=1, \ldots, N_{f}$. By Lemma 3 and Definition 1, we have that $\left(I_{i-1}^{+}, I_{i+1}^{-}\right) \in X_{f}^{m}$, $i=2, \ldots, N_{f}-1$. Whence $J_{i}=\left(I_{i-1}^{+}, I_{i+1}^{-}\right), i=2, \ldots, N_{f}-1$.

3. Characterization

Theorem 5. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an n-dimensional subspace of $C[a, b], f \in C[a, b] \backslash G, p \in G, r=f-p$ and $s(I)=\operatorname{sgn} r(I)$. Then the following statements are equivalent:
(a) p is a best approximation to f from G;
(b) There does not exist a $q \in G$ such that $s(I) q(I)>0$ for all $I \in X_{r}$;
(c) The origin of n space lies in the convex hull of the set $\left\{s(I) \hat{I}: I \in X_{r}\right\}$, where $\hat{I}=\left(g_{1}(I), \ldots, g_{n}(I)\right)$;
(d) $\max _{I \in X_{r}} s(I) q(I) \geqslant 0$ for all $q \in G$.

Proof. It is noted that X as well as X_{r} are all compact. As usual, we
denote by $C(X)$ the class of continuous functions on X. Then f and g_{i}^{\prime} s, as functions of I on X, are also elements of $C(X)$. Applying Theorem 1.3 of Chap. II in [3, p. 178] we directly get (a) \Leftrightarrow (c). Meanwhile, since the set $\left\{s(I) \hat{I}: I \in X_{r}\right\}$ is a compact set of the usual n-dimensional space, according to [1, p. 19, Theorem on Linear Inequalities] we assert (b) \Leftrightarrow (c). Finally, the equivalence $(b) \Leftrightarrow(d)$ is obvious.

In order to establish an alternation theorem we need a further condition on $\left\{g_{1}, \ldots, g_{n}\right\}$, which we shall give in the following definition.

Definition 3. A system of functions $\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, b]$ is said to be a quasi-Chebyshev system on $[a, b]$ (or a $Q T$-system), if

$$
D\left(I_{1}, \ldots, I_{n}\right):=\operatorname{det}\left\{g_{j}\left(I_{i}\right)\right\}_{i, j=1}^{n} \neq 0
$$

whenever $\left\{I_{i}\right\}_{1}^{n} \subset X$ is increasing. An n-dimensional subspace G of $C[a, b]$ is called a $Q T$-subspace if it has a basis which is a $Q T$-system.

We next establish a preliminary result, which is of independent interest.

Lemma 8. Let $p \in C[a, b]$. Let $\left\{I_{i}\right\}_{1}^{m} \subset X$ be weakly increasing and $e=1$ or -1 , fixed. Suppose

$$
\begin{equation*}
(-1)^{i} e p\left(I_{i}\right) \geqslant 0, \quad i=1, \ldots, m . \tag{3}
\end{equation*}
$$

Then the following statements hold:
(a) There exist m intervals $J_{1}, \ldots, J_{m}, J_{1}<\cdots<J_{m}$, such that

$$
\begin{equation*}
(-1)^{i} e p\left(J_{i}\right) \geqslant 0, \quad i=1, \ldots, m \tag{4}
\end{equation*}
$$

Furthermore, if $p(x)$ is not identically equal to zero on any nontrivial subinterval, $\left\{J_{i}\right)_{1}^{m}$ may be chosen so that

$$
\begin{equation*}
(-1)^{i} e p\left(J_{i}\right)>0, \quad i=1, \ldots, m ; \tag{5}
\end{equation*}
$$

(b) If $m>1$, there exist $m-1$ intervals $K_{1}, \ldots, K_{m-1}, K_{1}<\cdots<$ K_{m-1}, such that $p\left(K_{i}\right)=0, i=1, \ldots, m-1$.

Proof. Assume without loss of generality that $e=1$.
(a) Put

$$
\begin{array}{lll}
J_{1}=I_{1}, & I_{2}^{\prime}=I_{2} & \text { if } I_{1} \cap I_{2}=0 \\
J_{1}=I_{1} \backslash I_{2}, & I_{2}^{\prime}=I_{1} \cap I_{2} & \text { if } I_{1} \cap I_{2} \neq 0 \text { and } p\left(I_{1} \cap I_{2}\right) \geqslant 0 \\
J_{1}=I_{1} \cap I_{2}, & I_{2}^{\prime}=I_{2} \backslash I_{1} & \text { if } I_{1} \cap I_{2} \neq 0 \text { and } p\left(I_{1} \cap I_{2}\right)<0 .
\end{array}
$$

It is easy to see that $p\left(J_{1}\right) \leqslant 0, p\left(I_{2}^{\prime}\right) \geqslant 0$, and $J_{1} \cap I_{2}^{\prime}=0$. Meanwhile $\left\{I_{2}^{\prime}, I_{3}, \ldots, I_{m}\right\}$ is also weakly increasing and satisfies $p\left(I_{2}^{\prime}\right) \geqslant 0$ and $(-1)^{i} p\left(I_{i}\right) \geqslant 0, \quad i=3, \ldots, m$. By induction we can obtain $\left\{J_{i}\right\}_{1}^{m}$, $J_{1}<\cdots<J_{m}$, which satisfies (4).

If $p(x)$ is not identically equal to zero on any nontrivial subinterval, then $(-1)^{i} p\left(J_{i}\right) \geqslant 0$ implies that there is a subinterval of J_{i}, denoted again by J_{i}, satisfying $(-1)^{i} p(x)>0$ on J_{i}. Whence (5) follows.
(b) If $p(x) \equiv 0$ on some nontrivial subinterval, the conclusion is trivial. Otherwise by Part (a) there are m intervals $J_{1}, \ldots, J_{m}, J_{1}<\ldots<J_{m}$, satisfying (5). Now choose L_{i} and R_{i} in X so that

$$
L_{i}<R_{i}, L_{i} \cup R_{i} \subset J_{i},(-1)^{i} p\left(L_{i}\right)>0,(-1)^{i} p\left(R_{i}\right)>0, i=2, \ldots, m-1
$$

Since $p(I)$ is a continuous function of I, there exist $m-1$ nontrivial intervals K_{1}, \ldots, K_{m-1}, satisfying $p\left(K_{i}\right)=0, i=1, \ldots, m-1$ and $K_{i} \subset\left(R_{i}^{-}, L_{i+1}^{+}\right)$, $i=1, \ldots, m-1$, where $R_{1}=J_{1}$ and $L_{m}=J_{m}$. Thus $K_{1}<\cdots<K_{m-1}$.

We can characterize $Q T$-systems as follows.
Theorem 6. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, b]$. Then the following statements are equivalent:
(a) $\left\{g_{1}, \ldots, g_{n}\right\}$ is a QT-system;
(b) For any weakly increasing intervals I_{1}, \ldots, I_{n},

$$
D\left(I_{1}, \ldots, I_{n}\right) \neq 0
$$

(c) If $p \in G$ satisfies $p\left(I_{i}\right)=0, i=1, \ldots, n$, for a weakly increasing system of intervals $\left\{I_{1}, \ldots, I_{n}\right\} \subset X$, then $p=0$;
(d) $\left\{g_{1}, \ldots, g_{n}\right\}$ is a weak Chebyshev system on $[a, b]$ and every nonzero $p \in G$ does not vanish on any nontrivial subinterval.

Proof. (b) \Leftrightarrow (c) By means of the well known arguments.
(a) \Rightarrow (c) Suppose on the contrary that $p \neq 0$ and $p\left(I_{i}\right)=0$, $i=1, \ldots, n$, with $\left\{I_{i}\right\}_{1}^{n}$ being weakly increasing. Taking x so that $\min \left\{I_{n}^{-}, I_{n-1}^{+}\right\}<x<I_{n}^{+}$and denoting $J_{n}=\left(I_{n}^{-}, x\right), J_{n+1}=\left(x, I_{n}^{+}\right)$and $J_{i}=I_{i}, i=1, \ldots, n-1$, we see that J_{1}, \ldots, J_{n+1} are also weakly increasing and satisfy $(-1)^{i} e p\left(J_{i}\right) \geqslant 0, i=1, \ldots, n+1$, with $e=1$ or -1 , fixed, since $p\left(J_{n}\right)+p\left(J_{n+1}\right)=p\left(I_{n}\right)=0$. By Lemma 8 we obtain n intervals K_{1}, \ldots, K_{n}, satisfying $K_{1}<\cdots<K_{n}$, such that $p\left(K_{i}\right)=0, i=1, \ldots, n$. Obviously $D\left(K_{1}, \ldots, K_{n}\right)=0$, a contradiction.
(c) \Rightarrow (d) First we easily see that every nonzero $p \in G$ does not vanish on any nontrivial subinterval. Next suppose to the contrary that $p \in G$ has n sign changes on (a, b), say, $(-1)^{i} p\left(x_{i}\right)>0, i=1, \ldots, n+1$, where
$x_{1}<\cdots<x_{n+1}$. Thus we may choose $I_{i} \subset\left(x_{i}, x_{i+1}\right)$, so that $p\left(I_{i}\right)=0$, $i=1, \ldots, n$, contradicting (c).
(d) \Rightarrow (a) Assume that $\left\{g_{1}, \ldots, g_{n}\right\}$ is not a $Q T$-system. Then there exist increasing intervals I_{1}, \ldots, I_{n} such that $D\left(I_{1}, \ldots, I_{n}\right)=0$. Hence there is a $p \in G \backslash\{0\}$ such that $p\left(I_{i}\right)=0, i=1, \ldots, n$. Since $p(x)$ is not identically equal to zero on I_{i}, p has at least one sign change on $I_{i}, i=1, \ldots, n$. So we have totally at least n sign changes. This contradiction proves the implication (d) \Rightarrow (a).

Combining Theorem 6 and Lemma 8 the following corollary is immediate.

Corollary 1. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, b]$ such that g_{1}, \ldots, g_{n} forms a QT-system. Let $\left\{I_{1}, \ldots, I_{n+1}\right\} \subset X$ be weakly increasing and $e=1$ or -1 , fixed. If $p \in G$ satisfies $(-1)^{i} e p\left(I_{i}\right) \geqslant 0, i=1, \ldots, n+1$, then $p=0$.

From Theorem 6 we obtain directly
Corollary 2. A Chebyshev system must be a QT-system.

Lemma 9. Let G be an n-dimensional QT-subspace of $C[a, b]$. Let a system of extended intervals $\left\{I_{i}\right\}_{1}^{m}:=\left\{I_{j}^{\prime}\right\} \cup\left\{x_{k}\right\}$ be increasing, where $\left\{I_{j}^{\prime}\right\} \subset X$ and $\left\{x_{k}\right\} \subset(a, b)$. Suppose $m<n$. Then there exists a nonzero function $p \in G$ such that
(a) $p\left(I_{1}\right)=0, i=1, \ldots, m ;$
(b) p changes sign on each $I_{i}, i=1, \ldots, m$ (if $I_{i}=x_{k}$, this means that p changes sign at x_{k});
(c) p has exactly m sign changes on $[a, b]$.

Proof. Put for $t>0$ sufficiently small

$$
J_{i}=\left\{\begin{array}{l}
(b-(n-i) t, b-(n-i-1) t), \quad i=m+1, \ldots, n-1 \\
\text { if } m<n-1 \\
\left(x_{i}-t, x_{i}+t\right) \quad \text { if } I_{i} \in\left\{x_{k}\right\} \\
I_{i} \backslash\left\{\left(\bigcup_{l}[b-(n-l) t, b-(n-l-1) t]\right) \cup\left(\bigcup_{k}\left[x_{k}-t, x_{k}+t\right]\right)\right\} \\
\text { if } I_{i} \in\left\{I_{j}^{\prime}\right\} .
\end{array}\right.
$$

We see that $\left\{J_{i}\right\}$ is also increasing if $t>0$ is sufficiently small. Since G is a $Q T$-subspace, there exists a nonzero function $p_{t} \in G$ such that $p_{t}\left(J_{i}\right)=0$, $i=1, \ldots, n-1, p$ changes sign on each $J_{i}, i=1, \ldots, n-1$ and has no sign
change in each interval $\left(J_{i}^{+}, J_{i+1}^{-}\right), i=0, \ldots, n-1$, where $J_{0}^{+}=a$ and $J_{n}^{-}=b$. Furthermore we assume that $\left\|p_{t}\right\|=1$. Letting $t \downarrow 0$, we select a limit function $p \in G$ satisfying
(1) $\|p\|=1$;
(2) $p\left(I_{i}\right)=0, i=1, \ldots, m$;
(3) p does not change sign in each interval $\left(I_{i}^{+}, I_{i+1}^{-}\right), i=0, \ldots, m$, where $I_{0}^{+}=a$ and $I_{m+1}^{-}=b$. It is easy to see that p changes sign on each $I_{i}, i=1, \ldots, m$ and has exactly m sign changes. This completes the proof.

The main result in the present section is as follows.
Theorem 7. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, b]$ be an n-dimensional QT-subspace. Let

$$
f \in C[a, b] \backslash G, \quad p \in G, \quad r=f-p, \quad s(I)=\operatorname{sgn} r(I)
$$

Then the following statements are equivalent:
(a) p is a best approximation to from G;
(b) There does not exist a $q \in G$ such that $s(I) q(I)>0$ for all $I \in X_{r}$;
(c) The origin of n space lies in the convex hull of the set $\left\{s(I) \hat{I}: I \in X_{r}\right\}$, where $\hat{I}=\left(g_{1}(I), \ldots, g_{n}(I)\right)$;
(d) $\max _{I \in X_{r}} s(I) q(I) \geqslant 0$ for all $q \in G$;
(e) $\max _{I \in X_{r}} s(I) q(I)>0$ for all $q \in G \backslash\{0\}$;
(f) $\quad N_{r} \geqslant n+1$.

Moreover, the conclusions remain true if we replace X_{r} by any one of X_{r}^{*}, X_{r}^{M}, and X_{r}^{m}.

Proof. Theorem 5 already contains the equivalences $(a) \Leftrightarrow(b) \Leftrightarrow$ (c) \Leftrightarrow (d). We now show the other equivalences. Denote $N=N_{r}$ and $X_{r}^{m}=\left\{I_{1}, \ldots, I_{N}\right\}$ with $I_{1}<\cdots<I_{N}$. Assume without loss of generality that $s\left(I_{1}\right)>0$.
(b) \Rightarrow (f) Suppose to the contrary that $N \leqslant n$. Put

$$
K_{i}= \begin{cases}\left(I_{i}^{-}, I_{i+1}^{+}\right) & \text {if } i=\text { odd } \\ \left(I_{i}^{+}, I_{i+1}^{-}\right) & \text {if } i=\text { even and } I_{i}^{+}<I_{i+1}^{-}(i=1, \ldots, N-1) \\ I_{i}^{+} & \text {if } i=\text { even and } I_{i}^{+}=I_{i+1}^{-}\end{cases}
$$

Obviously the system of extended intervals $\left\{K_{1}, \ldots, K_{N-1}\right\}$ is increasing. By Lemma 9 there is a nonzero $q \in G$ such that (1) $q\left(K_{i}\right)=0, i=1, \ldots, N-1$; (2) q changes sign on each interval $K_{i}, i=1, \ldots, N-1$; (3) q has exactly
$N-1$ sign changes on $[a, b]$. We assume that $q\left(I_{1}\right) \geqslant 0$ (taking - q instead of q if necessary). Denote $K_{0}=\left[a, K_{1}^{-}\right)$and $K_{N}=\left(K_{N-1}^{+}, b\right]$.

Assertion. If K_{i} is nontrivial for $0 \leqslant i \leqslant N$ then

$$
(-1)^{i+1} q\left(\left(K_{i}^{-}, x\right)\right)>0, \quad x \in K_{i}, i>0
$$

and

$$
(-1)^{i+1} q\left(\left(x, K_{i}^{+}\right)\right)<0, \quad x \in K_{i}, i<N .
$$

There are three cases to be discussed.
Case 1. $0<i<N$.
In this case it follows from $q\left(K_{i}\right)=0$ that

$$
q\left(\left(K_{i}^{-}, x\right)\right)=-q\left(\left(x, K_{i}^{+}\right)\right) .
$$

Since $q\left(I_{1}\right) \geqslant 0$ and q has exactly one sign change on K_{i},

$$
(-1)^{i+1} q\left(\left(K_{i}^{-}, x\right)\right)>0
$$

and

$$
(-1)^{i+1} q\left(\left(x, K_{i}^{+}\right)\right)<0 .
$$

Especially, for $i=1$ and $i=N-1$ we obtain

$$
\begin{equation*}
q\left(\left(K_{1}^{-}, x\right)\right)>0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{N} q\left(\left(x, K_{N-1}^{+}\right)\right)<0 . \tag{7}
\end{equation*}
$$

Case 2. $i=0$.
Since q has no sign change on K_{0}, by (6) we obtain $q\left(\left(x, K_{0}^{+}\right)\right)>0$. This proves the assertion when $i=0$.

Case 3. $i=N$.
Since q has no sign change on K_{N}, if $K_{N-1} \notin\left\{x_{k}\right\}$ we obtain by (7) that $(-1)^{N} q\left(\left(K_{N}^{-}, x\right)\right)<0$ or $(-1)^{N+1} q\left(\left(K_{N}^{-}, x\right)\right)>0$, which is the assertion when $i=N$. Clearly this assertion is also valid for $K_{N-1} \in\left\{x_{k}\right\}$.

Now let $I \in X_{r}$ be arbitrary. Then the interval I must contain an odd number of $I_{i}^{\prime} s$, say, $I \supset\left(I_{j} \cup \cdots \cup I_{j+2 k}\right)$, where $j \geqslant 1, j+2 k \leqslant N$, $k \geqslant 0$. Thus $I \supset\left(K_{j} \cup \cdots \cup K_{j+2 k-1}\right)$. Letting $L=\left(I^{-}, K_{j-1}^{+-1}\right)$ and $R=\left(K_{j+2 k}^{-}, I^{+}\right)$, we have that $q(I)=q(L)+q\left(K_{j} \cup \cdots \cup K_{j+2 k-1}\right)+$
$q(R)=q(L)+q(R)$. If $L \neq 0$ and $I^{-} \in K_{j-1}$ then $(-1)^{j} q(L)<0$, i.e., $(-1)^{j+1} q(L)>0$; otherwise $q(L)=0$. Also, if $R \neq 0$ and $I^{+} \in K_{j+2 k}$ then $(-1)^{j+2 k+1} q(R)>0$, i.e., $(-1)^{j+1} q(R)>0$; otherwise $q(R)=0$. Thus $(-1)^{j+1} q(I)>0$ since $q(L)=0$ and $q(R)=0$ may not occur simultaneously. According to the assumption that $s\left(I_{1}\right)>0$ we conclude that $s(I)=s\left(I_{j}\right)=(-1)^{j+1} s\left(I_{1}\right)=(-1)^{j+1} \quad$ and whence $\quad s(I) q(I)>0$, contradicting (b).
(f) \Rightarrow (e) Assume (c) does not hold and let $q \in G \backslash\{0\}$ satisfy $\max _{I \in X_{r}}$ $s(I) q(I) \leqslant 0$. Whence $\max _{I \in X_{r}^{m}} s(I) q(I) \leqslant 0$ or $s\left(I_{i}\right) q\left(I_{i}\right) \leqslant 0, i=1, \ldots, N$. Since $s\left(I_{i}\right)=(-1)^{i+1} s\left(I_{1}\right)$,

$$
(-1)^{i} s\left(I_{1}\right) q\left(I_{i}\right) \leqslant 0, i=1, \ldots, N .
$$

By Corollary 1, $q=0$, a contradiction.
$(\mathrm{e}) \Rightarrow(\mathrm{d})$ Trivial.
In the proof of (f) \Rightarrow (e) we have actually shown that (f) implies $\max _{I \in X_{r}^{m}} s(I) q(I)>0$ for all $q \in G \backslash\{0\}$. Similarly, (f) implies $\max _{I \in X_{r}^{M}} s(I) q(I)>0$ for all $q \in G \backslash\{0\}$ and implies $\max _{I \in X_{r}^{*}} s(I) q(I)>0$ for all $q \in G \backslash\{0\}$. On the other hand, the implications $(\mathrm{e}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{c}) \Rightarrow$ $(\mathrm{b}) \Rightarrow(\mathrm{a}) \Rightarrow(\mathrm{f})$ remain valid if we replace X_{r} by any one of X_{r}^{m}, X_{r}^{M}, and X_{r}^{*}.

Theorem 8. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, b]$ be an n-dimensional $Q T$-subspace and $f \in C[a, b] \backslash G$. Let $p \in G$ satisfy

$$
\begin{equation*}
(-1)^{i} e\left(f\left(I_{i}\right)-p\left(I_{i}\right)\right) \geqslant 0, \quad i=1, \ldots, n+1 \tag{8}
\end{equation*}
$$

where $\left\{I_{i}\right\} \subset X, I_{1}<\cdots<I_{n+1}$, and $e=1$ or -1 , fixed. Then

$$
\inf _{q \in G}\|f-q\| \geqslant \min _{1 \leqslant i \leqslant n+1}\left|f\left(I_{i}\right)-p\left(I_{i}\right)\right| .
$$

Equality can occur if and only if p is a best approximation to f and $\left\{I_{i}\right\} \subset X_{f-p}$.

Proof. Letting $p^{*} \in G$ be a best approximation to f,

$$
\left\|f-p^{*}\right\| \leqslant \min _{1 \leqslant i \leqslant n+1}\left|f\left(I_{i}\right)-p\left(I_{i}\right)\right|
$$

implies that

$$
(-1)^{i} e\left(p^{*}\left(I_{i}\right)-p\left(I_{i}\right)\right) \geqslant 0, \quad i=1, \ldots, n+1
$$

By Corollary 1 we must have $p=p^{*}$ and $\left\{I_{i}\right\} \subset X_{f-p}$. Conversely, if p is a best approximation to f and $\left\{I_{i}\right\} \subset X_{f-p}$ then equality occurs.

4. Uniqueness

Theorem 9. Let p be a best approximation from G to $f \in C[a, b]$. If G is a QT-subspace of $C[a, b]$, then p is unique.

Proof. If $f \in G$ then $p=f$ is unique. Now suppose $f \notin G$. Let $p^{*} \in G$ be another best approximation. Then for $X_{f-p}^{m}=\left\{I_{1}, \ldots, I_{N_{t-p}}\right\}$, $I_{1}<\cdots<I_{N_{f-}-p}$, we have (8) with $e=-\operatorname{sgn}\left(f\left(I_{1}\right)-p\left(I_{1}\right)\right)$ and $\left\|f-p^{*}\right\|=$ $\|f-p\|=\min \left\{\left|f\left(I_{i}\right)-p\left(I_{i}\right)\right|: 1 \leqslant i \leqslant N_{f-p}\right\}$. From Theorem 8 it follows that $p=p^{*}$.

By the same arguments as in the proof of [1, p. 80, Strong Unicity Theorem] we obtain the following.

Theorem 10. Let p be a best approximation from G to $f \in C[a, b]$. If G is an n-dimensional $Q T$-subspace of $C[a, b]$, then there exists a constant $\gamma>0$ depending on f such that for any $q \in G$

$$
\|f-q\| \geqslant\|f-p\|+\gamma\|p-q\| .
$$

Let G be an n-dimensional QT-subspace of $C[a, b]$. Then to each $f \in C[a, b]$ let $\tau f \in G$ be the (unique) best approximation to f. An analysis similar to the proof of the theorem in $[1, \mathrm{p} .82]$ gives

Theorem 11. Let G be an n-dimensional QT-subspace of $C[a, b]$. Then to each $f_{0} \in C[a, b]$ there corresponds a number $\lambda>0$ such that for all $f \in C[a, b]$

$$
\left\|\tau f-\tau f_{0}\right\| \leqslant \lambda\left\|f-f_{0}\right\| .
$$

Acknowledgment

The author is very grateful to the referee for his (her) invaluable comments and suggestions.

References

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. A. Pinkus and O. Shisha, Variations on the Chebyshev and L^{q}-theories of best approximation, J. Approx. Theory 35 (1982), 148-168.
3. I. Singer, "Best Approximation in Normed Linear Space by Elements of Linear Subspace," Springer-Verlag, Berlin, 1970.

[^0]: * Supported by the Science Fund of the Chinese Academy of Sciences.

